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Two-phase vapor-liquid equilibrium (VLE) isochores for binary mixtures are 
defined as the thermodynamic paths along which the overall density and com- 
position are fixed. Data along such isochores are generated from a modified 
Leung-Griffiths model fit to experimental data for the binary system 
nitrogen-methane. The behavior of the liquid volume fraction along these 
i8ochores is found to be similar to that for pure fluids. Rectilinear diameters for 
varying overall densities (fixed composition) are seen to be nearly coincident. 
Straight-line diameters and the critical liquid volume fraction method are 
utilized to predict critical densities using data near and removed from the 
critical point. Both methods give acceptable results but the critical liquid 
volume fraction method is more accurate. A critical literature review of the need 
for binary mixture critical densities is presented and a proposed experimental 
procedure is given for the determination of mixture critical densities. 

KEY WORDS: coexistence densities; critical density; liquid volume fraction; 
mixtures; nitrogen-methane; phase equilibria; rectilinear diameter; two-phase 
isochores. 

1. I N T R O D U C T I O N  

Critical density loci of binary mixtures for vapor-liquid equilibrium (VLE) 
are in general known with much less certainty than loci of critical tem- 
peratures or pressures. Gravity and other factors cause extreme difficulties 
in the direct experimental measurement of critical densities even of pure 
fluids [1, 2] and these problems are significantly more severe for binary 
mixtures [3, 4]. 
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696 Van Poolen and Rainwater 

As a result, pure fluid critical densities have often been inferred from 
coexisting densities near the critical as an alternative to direct 
measurement. One approach frequently used is to extrapolate a rectilinear 
diameter, usually assumed to be a straight line on a temperature-density 
plot, to a "known" critical temperature [-5]. This approach has been 
attempted on occasion for mixtures along loci of fixed composition [-6, 7], 
although its applicability there is much more questionable. 

Van Poolen and co-workers [,8-11] have developed an alternate 
method based on the observation that the liquid volume fraction 
approaches one-half at the critical point along the two-phase critical 
isochore. Their method can be used to check the self-consistency of 
saturated density correlations [,8], to predict accurately the critical density 
from saturation densities either close to or somewhat removed from the 
critical point [-9, 11 ], and to predict saturation densities of one phase, 
liquid or vapor, given those of the other phase [-9, I0]. An objective of this 
paper is to apply Van Poolen's approach, for the first time, to binary 
mixtures and to compare it to the use of a straight-line rectilinear diameter. 

A two-phase isochore can be defined for a binary mixture, but its 
properties are somewhat different for a mixture than for a pure fluid. Also, 
it is not the thermodynamic path along which vapor liquid equilibrium 
density data have been taken in most previous experiments. Therefore, our 
initial application of the liquid volume fraction method is necessarily in 
reference to a correlation of a coexistence surface based on experimental 
data, not directly to experimental results. 

Traditional equations of state for binary mixtures qualitativaly predict 
a correct VLE surface but typically the phase equilibrium calculations fail 
to converge or are inaccurate within the critical region. However, recently 
Rainwater, Moldover, and co-workers [ 12-17] have extended the model of 
Leung and Griffiths I-,18] to obtain accurate VLE correlations for more 
than 20 binary mixtures in the critical region. Unlike classical equations of 
state, their model incorporates scaling-law critical exponents and thus 
approaches the correct critical asymptotic limit. In its present form it does 
not contain the higher-order nonanalytic terms of revised and extended 
scaling [19]. 

In this paper, the liquid volume fraction technique is generalized to 
binary mixtures and applied to the results of a correlation of Rainwater 
and Moldover in lieu of direct experimental data. It is instructive to choose 
a specific prototype mixture, which we take to be nitrogen + methane. Our 
discussion is based on the correlation [14] of the VLE data of Bloomer 
and Parent [20]. 

Nitrogen + methane is a convenient mixture for several reasons. The 
relative volatility is sufficiently large that mixture behavior, e.g., retrograde 
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condensation, is clearly in evidence, yet not so large that the assumptions 
of the model break down. It is of industrial importance as a model for cer- 
tain samples of natural gas. In addition to the work of Bloomer and Parent 
[20], VLE data for this mixture (without saturation density information) 
have been measured independently by Cines et al. [21], Kidnay et al. [22], 
and Stryjek etal. [23]. The fit to the constant-composition data of 
Bloomer and Parent yields a good agreement with these three aforemen- 
tioned isothermal experiments and, particularly, is in good agreement with 
Stryjek et al. The discrepancies between the correlation and the latter 
measurements appear to be significantly smaller than the discrepancies 
among the three experiments. 

A question arises as to whether our conclusions apply to actual 
experimental data or merely to a theoretical model. In a strict sense, we are 
demonstrating some properties of a mathematical correlation, and certain 
detailed behavior, e.g., the absence of the last term in Eq. (20) below, is 
almost certainly an artifact of the model. However, since the model is a 
faithful representation of the data of Bloomer and Parent, and others, we 
have confidence that our conclusions, for the most part, are applicable to 
real binary mixtures. 

In Section 2, the modified Leung-Griffiths model is very briefly sum- 
marized, and in Section 3 the binary mixture two-phase isochore is defined 
and its determination from the model is explained. The behavior of the 
liquid volume fraction is also noted. The nature of a rectilinear diameter for 
binary mixtures is described in Section4. Various fitting functions 
previously used for pure fluid coexisting densities are applied in Section 5 
to the mixture critical isochore. In Section 6 we note the large number of 
binary mixtures for which critical temperatures are known but critical 
densities are not, and in the following two sections an experimental and 
correlating method is developed to establish critical density loci for such 
mixtures. Results are summarized in Section 9. 

2. THE MODIFIED LEUNG-GRIFFITHS MODEL 

The system under consideration is a normal (i.e., nonazeotropic) 
binary mixture with a continuous critical line and coexistence surface. In 
pressure (P)-temperature (T) space the coexistence region is bounded from 
above by the critical locus and from the sides by the vapor pressure curves 
of the two pure fluids. Within this region, at any (P, T) point vapor of 
density pV and composition x v coexists with liquid of density p~ and 
composition x ~. In the absence of azeotropy, and away from the critical 
locus, x v =# x t. 

The Leung-Griffiths model is expressed in terms of "field variables," 
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defined by Griffiths and Wheeler [24] as those variables which are equal 
for both liquid and vapor. The fundamental field variables are P, T, and 
the chemical potentials #1 and ~2; functions of these variables are also field 
variables. In contrast, "density variables" such as p and x differ between 
liquid and vapor. 

The independent field variables of the Leung-Griffiths model as 
modified by Rainwater and Moldover [14, 16] are ~ and t, where 

e,Ul/RT 

= Ke;,2/RT + e~,/RT (1) 

where R is the gas constant, and 

t -  

Also, on the critical line 

T -  ir(~) 
Tc(~) 

(2) 

x = l - ~  (3) 

In earlier work [-12-15, 17], K in Eq. (1) was assumed to be constant. 
Recently it has been shown [-16] that K can be a temperature-dependent 
function without changing the thermodynamic expressions for density and 
composition, although other variables such as the enthalpy are changed. 

Our convention is that fluid 1 is the less volatile component, here 
methane, and x =  1 is pure fluid 2. Since #1--* -oo  for pure fluid 2, and 
vice versa, ~ = 0  if x =  1 and conversely. If To(x) is a monotonically 
decreasing function of x, a temperature-dependent K exists such that 
Eq. (3) holds exactly along the critical locus. 

It is assumed within the model that, on the coexistence surface, lines of 
constant ~ are given by 

P-Pc(~)[ l+C3(~) ( - t ) l9+C4(~) t+Cs(~ l t2+C6(~) t3]  (4 t 
T Tc(~) 

For ( =  1 or 0, Eq. (4) represents a fit to the vapor pressure curve of 
fluid 1 or 2, respectively, and those fit coefficients are denoted by C/1) and 
Ce ~2). It is further assumed that the ~-dependent coefficients may be found 
by linear interpolation, i.e., 

Ci(~)  -~- Ci (2) --t- ~[Ci (1 ) -  Ci(2)]; i =  3, 4, 5, 6 (5) 

Equations (4) and (5) imply that loci of constant ff form a nearly 
parallel set of curves; see Fig. 1 in Ref. 14. Unlike Eq. (3), there is not 
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enough freedom in the definition of ( to make Eqs. (4) and (5) hold in 
general. However, it is found empirically that these are excellent 
approximations as long as the molecules of fluids 1 and 2 are not too 
dissimilar. 

A further assumption of the model is that 

p = pc(()[1 _+ C1(~)( - t) ~ + C2(~) t] (6) 

where plus refers to liquid and minus to vapor, and/3 = 0.355. Thus, along 
loci of constant (, coexisting densities behave like those of a pure fluid with 
a straight rectilinear diameter. This is not to be confused with loci of 
constant x (dew-bubble curves), which in general have a shape quite 
different from that of Eq. (6). The ( dependence of C1 and C2 in general is 
somewhat more complicated than indicated by Eq. (5) 1-14, 16]. 

In the two-phase region, for each (P, T) or ((, t) point, a liquid of 
composition x l coexists with a vapor of composition x v. Within the model, 
x ~ and x v are given as functions of ( and t as well as derivatives of the 
critical line and some adjustable parameters. The expressions are somewhat 
lengthy [-14-17] and are not repeated here. 

To calculate dew-bubble curves, first a set of t values in essentially a 
geometric series is constructed to achieve more resolution near the critical 
point. Then, for each t, the equations for xt((, t) and xV((, t) are inverted 
numerically to find the values of ( such that x z and/or x v equal the specified 
composition. With ( and t determined, the pressure, temperature, and 
density of the dew or bubble point are given by Eqs. (2), (4), and (6). 

3. TWO-PHASE ISOCHORES 

A point (P, T) on the coexistence surface corresponds to a particular 
liquid state in equilibrium with a particular vapor state. However, we can 
add a new dimension to the description by varying the relative amounts of 
liquid and vapor or changing the height of the meniscus. A single (P, T) 
point thus corresponds to a range of two-phase states which can be charac- 
terized by an overall composition xa- and an overall density PT, where by 
our convention 

and 

xt(P, T) <<. x T ~ xv(p,  T) (7) 

p'(P, r) >/oT >/p~(P, T) (8) 

The totality of two-phase states of a given XT or a given Px covers a 
bounded two-dimensional region in P - T  space. For  example, the former is 
the "inside" of the dew-bubble curve for composition XT. 
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However, if both XT and PT are specified, there is only one degree of 
freedom (discussed in more detail later) and the set of such two-phase 
states falls onto a one-dimensional curve in P - T  space. We define a "two- 
phase isochore" to be such a locus of fixed XT and PT. A critical two-phase 
isochore is one for which PT = po(XT) and terminates at the critical point 
for composition XT- If PT r the isochore terminates on the dew- 
bubble curve for composition XT and short of the critical locus, as shown in 
Fig. 1. Two-phase isochores can be defined for a pure fluid as well. The 
main differences are that, for a mixture, the liquid and vapor have different 
compositions and that, for a pure fluid, all two-phase isochores follow the 
same curve in P - T  space, whereas two-phase isochores of different P r fall 
on different P - T  curves for a mixture. 

Unlike a pure fluid, it is important  for mixture analysis to distinguish 
between mass and molar density. In our model, p is the molar density and 
x is the mole fraction of fluid 2. Let N be the total number of moles of a 

n 
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Fig. 1. Two-phase isochores near the critical point of a 
n i t rogen+methane  mixture with XT(N2)=0.5088. The dashed 
line is the critical line, the broken line is the dew-bubble curve, 
and the solid lines are isochores with densities as indicated. Note 
that only the critical isochore in the center extends to the critical 
line. The same qualitative pattern applies for all compositions. 
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mixture, V~ the liquid volume, and Vv the vapor volume. Amount-of-sub- 
stance balance overall and for fluid 2 yields, respectively, 

N=p~Vt+pvV, ,  (9) 

N x  T = xZptVt + xVpV w (10)  

Solving for the volumes yields 

N(xv--XT) 
Vt= y ( x , _ x t  ) ( t i )  

and 

N(x  T - x 1) 
Vv = pV(xv - x') (12) 

The total density of the mixture is 

N I - v  
PT-- I /~+ Vv=(Xv  Xt)[_.X - -X T 7JXT--XZ~--I - -  -~7 4- ( 1 3 )  

and thus is expressed in terms of quantities that can be calculated from the 
algorithm described in the preceding section for a given XT. 

The liquid volume fraction XLV is defined as 

gl 
XLV=~T (14) 

where VT= VtJr g v. From a rearrangement of Eq. (9), 

DT JTT = plvt-~ Dv(~rT --  ~/l)) 

Eqs. (14) and (15) then give 

(15) 

J;L = PTZP'~ (16) v p~ pV 

and a similar calculation based on Eq. (10) leads to 

X = pTXT~-p\lc" (17) 
LV plXZ ~ pVxV �9 

Alternately, Eq. (13) can be derived by equating the right sides of Eqs. (16) 
and (17) and solving for PT. Equating Eqs.(16) and (17) yields a 
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relationship between the intensive variables in addition to those 
relationships between temperature, pressure, chemical potentials, and 
molar fractions used to obtain Gibbs' phase rule. Thus if PT and x x are 
held constant, a system with one degree of freedom obtains (as stated 
previously) and a two-phase isochore falls on a single curve in a fashion 
similar to pure fluids; see Fig. 1. 

The numerical codes to calculate dew-bubble curves according to the 
modified Leung-Griffiths model have been extended to calculate two-phase 
isochores. As described in the previous section, for a given t, values of ~, 
denoted here by ~t and ~v, are determined, where xt(~t, t ) = X  T and 
xV(~v, t ) = x x ,  and ~z<ffv. Then the value of ff within the interval 
~1 < ~ < ~v is found numerically such that, for the given t and PT, Eq. (13) 
is satisfied. From this ff and t, the pressure, temperature, and liquid and 
vapor compositions and densities can be calculated for such a point on the 
two-phase isochore. An input array of t values yields an output array of 
points along the isochoric locus. 

Some sample output is given in Tables I-III  based on the fit by 
Rainwater and Moldover [14] to the nitrogen + methane data of Bloomer 
and Parent [20], where X T ( N 2 ) = 0 . 5 0 8 8  is one of the experimentally 
measured isopleths. Table II describes the critical isochore, PT = Pc, while 
Table I describes an isochore somewhat below critical (PT/Pc = 0.931) and 
Table III describes one somewhat above critical (PT/Pc = 1.069). Note that 
Tc = 159.48 K, Pc=4.8967 MPa, and pc= 11.433 kmol .m 3. 

Table I. Two-Phase Isochore for xx(N2)=0.5088 and P'r/Pc = 0.931 

Pressure Temperature pt pV 
(MPa)  (K) ( k m o l . m  3) ( k m o l - m  3) x l x ~ XLV 

4.9138 160.311 12.2069 10.6403 0.4844 0.5089 0.00231 
4.9070 160.241 12.5826 10.2687 0.4795 0.5158 0.16229 
4.8838 160.017 13.2067 9.6584 0.4721 0.5281 0.27787 
4.8190 159.421 14.0729 8.8304 0.4634 0.5470 0.34597 
4.6017 157.483 15.5396 7.4936 0.4528 0.5836 0.39152 

4.3085 154.866 16.7586 6.4551 0.4476 0.6176 0.40657 
4.0321 152.348 17.6516 5.7391 0.4459 0.6443 0.41176 
3.7704 149.901 18.3867 5.1784 0.4456 0.6671 0.41381 
3.5225 147.514 19.0251 4.7124 0.4463 0.6874 0.41444 
3.2875 145.180 19.5968 4.3110 0.4476 0.7057 0.41432 

3.0649 142.895 20.1193 3.9571 0.4492 0.7226 0.41375 
2.8542 140.655 20.6036 3.6398 0.4511 0.7384 0.41290 
2.6548 138.458 21.0571 3.3519 0.4533 0.7531 0.41187 
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Table IL Two-Phase Isochore for XT(N2) = 0,5088 and PT/Pc = 1 .00  
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Pressure Temperature pt p-~ 
(MPa) (K) (kmol .m - j )  (kmol-m -3 ) x t xV YLV 

4.8932 159.441 12.2182 0.5219 0,49934 
4.8864 159.374 12,5942 0,5287 0.49870 
4.8632 159.155 13.2188 0.5409 0.49728 
4.7986 158.573 14.0855 0.5596 0.49455 
4.5819 156.677 15.5524 0.5954 0.48847 

~2898 154,114 16.7711 0.6285 0.48240 
4.0146 151.649 17.6636 0.6544 0.47744 
3.7542 149.252 18.3980 0.6763 0.47313 
3.5076 146,914 19.0357 0.6958 0.46924 
3.2740 144,626 t9.6067 0.7t35 0.46568 

3.0527 142.385 20.1285 0.7297 0.46237 
2.8432 140.187 20.6121 0.7449 0.45926 
2.6450 138.029 21.0649 0.7591 0.45632 

10.6500 ~4974 
10.2780 0.4925 
9.6669 0.4850 
8.8378 0,4762 
7.4986 0,4651 

6.4580 0.4593 
5.7405 0.4570 
5.1786 0.4563 
4.7115 0.4564 
4.3093 0,4572 

3.9547 0.4583 
3.6370 0.4598 
3.3487 0.4614 

i ii  

It is seen that the liquid volume fraction behaves very much like that 
of a pure fluid [-8-11]. On the critical isochore JfLV approaches one-half, 
whereas on the isochore below critical it reaches a maximum value and 
falls abruptly toward the limit of zero, and on the isochore above critical it 
rises abruptly toward a limiting value of one. 

Table III. Two-Phase Isochore for xT(N2) =0,5088 and Pr./Pc = 1,069 

Pressure Temperature p/ pV 
(MPa) (K) (kmol-m - j )  (kmol-m -3) x / x v XLV 

4.8742 158.685 12.2274 10.6579 0.5087 0.5331 0.99623 
4.8674 158.619 12.6038 10,2855 0,5038 0.5399 0.83529 
4.8443 158.406 13.2288 9.6737 0,4963 0.5521 0.71681 
4.7799 157,836 14.0959 8.8436 0.4873 05705 0.64340 
4.5639 155.979 15.563t 7.5025 0.4758 0.6056 0.58546 

4.2730 153.467 16.7815 6,4601 0,4695 0.6379 0.55824 
3.9990 151,048 17.6735 5.7412 0.4667 0.6629 0.54312 
3.7399 148.696 18.4074 5.t783 0.4655 0.6842 0.53243 
3.4946 146.400 19.0445 4,7104 0.4652 0.7030 0.52403 
3.2622 144.153 19.6150 4.3076 0.4655 0.7201 0.51703 

3.0421 141,950 20.1362 3.9525 0.4662 0,7357 0.51097 
2.8337 139.788 20,6192 3.6343 0.4672 0.7504 0.50560 
2.6365 137.664 21.0714 3.3457 0.4684 0.7641 0.50075 

8 4 0 / 8 / 6 - 5  
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4. N E A R - C O I N C I D E N C E  O F  R E C T I L I N E A R  D I A M E T E R S  O F  
T W O - P H A S E  I S O C H O R E S  

In this section we describe an observation which can be exploited to 
obtain simple and accurate measurements of binary mixture critical den- 
sities. As shown in Tables I III, for each point on the two-phase isochore 
there are a pair of coexisting densities, and along such an isochore these 
densities are functions of T. We thus define P/(pT, XT, T) and 
piv(pT, XT, T) and proceed to define a rectilinear diameter for the isochore 
(i), PR(PT, XT, T) by 

~{Pi (PT, XT, v pR(PT, XT, T) =1 ' T ) + p i  (Px, XT, T)} (18) 

For pT>po(XT), these functions terminate at a temperature below 
To(XT), whereas for PT <pc(XT) in the retrograde region they terminate 
above Tc(xv). The densities p /  and piv are not to be confused with the 
liquid and vapor densities on the dew-bubble curve for a composition x T. 
Indeed, the latter densities correspond to liquid and vapor states which 
do not coexist; for example, they are at different pressures for the same 
temperature. 

Sample results from the nitrogen + methane correlation are plotted in 
Fig. 2 for XT(N2)=0.5088 and the two-phase isochores for pT=0.931pc, 
pT=pc, and pT = 1.069po. Also shown is the dew-bubble curve for 
xT(N2)=0.5088 and its region of retrograde condensation above 
Tc(XT) = 159.48 K. From this and similar diagrams, two observations can 
be made. First, the rectilinear diameters are nearly straight lines. Second, 
the various different rectilinear diameters nearly coincide, i.e., they nearly 
fall on the same straight line. Mathematically, this implies that 
PR(PT, XT, T) is almost independent of PT, at least for PT within about 7% 
of Pc. 

From Eq. (6), the modified Leung-Griffiths model has the built-in 
constraint that the rectilinear diameter for a line of constant ( is a straight 
line. Therefore, if the two-phase isochores were nearly identical to loci of 
constant ~, the first observation would be a trivial artifact of the model. In 
fact, although two-phase isochores are qualitatively similar to curves of 
fixed (, along an isochore ~ shows considerable variation. For example, 
along the critical isochore ~ =0.4912 at t = 0 ,  as required by Eq. (3), but 
(=0.381 at t =  -0.9. Therefore, the nearly straight rectilinear diameters 
are probably a property of the actual data rather than an artifact of the 
model. 

In Fig. 3 an expanded view of the isochore rectilinear diameters is 
shown. It is seen that they do not exactly coincide, and we can see no 
mathematical reason to expect that they should. However, the differences 
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between them are exceptionally small. The pattern for other experimentally 
measured isopleths of the mixture nitrogen + methane is similar, except 
that for nitrogen-rich mixtures there is a noticeable, but essentially 
negligible, curvature of the rectilinear diameters. 

For a verification of the above hypothesis, direct experimental data for 
two-phase isochores would be useful. It is a fairly common procedure in 
VLE experiments [25] to determine a dew or bubble point by observing 
the change in slope in P - T  space of an isochore as it crosses the coexistence 
surface. However, usually the coexisting densities and compositions in the 
two-phase i'egion are not monitored. We are aware of only one experiment 
in which they have been monitored, that of Schneider and Maass [26] on 
an equimolar mixture of ethylene and propylene. Since Schneider and 
Maass measured only the critical two-phase isochore, our hypothesis of the 
near-coincidence of rectilinear diameters for different isochores cannot be 
tested. The Schneider-Maass results are discussed further in the following 
section. 

5. FIT OF THE CRITICAL T W O - P H A S E  I S O C H O R E  

For pure fluids, Van Poolen et al. [11 ] have considered the following 
three expressions to fit the rectilinear diameter and determine the critical 
density, where e = T c -  T, 

p~+ pv = A + Be, (19) 

pt + pv = A + Be + Ce (1 D), (20) 

and 

pt + pV = A + BeC(pz- pv) + DeE(p~-- Pv) (21) 

The methods are described in detail in Ref. 27. Measurements of pt and 
pV are assumed to be available for a set of T <  To. It is further assumed 
that To (but not necessarily Pc) is known with precision, and thus e is 
known for each data pair. Equations (19)-(21) are fit with A through E as 
adjustable parameters [or, in some cases, D in Eq. (20) or C and E in 
Eq. (21) held constant] by standard methods. The estimated critical 
density from these optimizations then is Pc = A/2. 

Equation (19) describes a straight rectilinear diameter and is con- 
sistent with Eq. (6) for ~ = 0  or 1, i.e., for the pure fluids. Equation (20) 
describes a rectilinear diameter with a "hook." Within revised and extended 
scaling [18] D = c~ ~ 0.1, where c~ is the critical exponent characterizing the 
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divergence of the specific heat at constant volume. Finally, Eq. (21) is a 
rearrangement of the truncated expansion 

Ycvc -- p~ -- pV _ 1 -- p t _ p v - - 2  [ 1 - B e  c - D e  e ] (22) 

where XLvc is the critical liquid volume fraction; cf. Eq. (i6). 
Within simple scaling, which is all that is contained in the present 

form of the modified Leun~Griffiths model, the leading-order exponent in 
Eq.(22) is C = l - f i ,  whereas within revised and extended scaling 
C =  t - /3-0~.  Empirically it has been found [1t]  for pure ethylene and 
oxygen that C ~ 0.5 and E,,~ t.0 provide the optimal fit. 

From the earlier discussion, we expect that Eqs. (19) and (21) are 
applicable to the critical two-phase isochore of a binary mixture within the 
model, whereas Eq. (20) is not appropriate since the model in its present 
form does not contain a rectilinear diameter hook. Efforts have commenced 
to incorporate revised and extended scaling into the Leung-Griffiths model 
so that a hook is present, but the results are very preliminary at the present 
time. In fitting the isochore to Eq.(21) we use the fixed values 
C = 0.65 ~ 1 -/~ and E = 1. 

As an example, we use as input the results in Table II for 
XT(N2) = 0.5088 and P-r = Pc(XT), first, over the entire range available and, 
second, over a range somewhat removed from critical, 
138.029K< T< 144.626K. These values are fit to Eqs. (19) and (21) in 
turn, and the "predicted" po = A/2 is compared with the known model 
Pc = 11.433 kmoI-m -3. 

Results are expressed as percentage error, i.e., 100x (A/2-pr 
From the straight rectilinear diameter, Eq. (19), the error is -0.050% for 
the full interval and -0.292% for the interval away from critical, whereas 
from the liquid volume fraction, Eq. (21), the errors are -0.00183% for 
the full interval and -0.146% for the interval away from critical. 

As can be seen, the fits to the critical isochore result in good estimates 
for the critical density whether one uses a straight line or the liquid volume 
fraction method. The results were good whether or not data were fit in the 
critical region. The fit of the complete data to the diameter from the critical 
liquid volume fraction, Eq. (21), was by far the best as can be seen by the 
small error in Pc estimated, i.e., -0.00183%. 

We have also attempted fits of the experimental data of Schneider and 
Maass [26] for the equimolar two-phase isochore of ethylene + propylene 
to Eqs. (19) and (2t). Some evidently anomalous data points were omitted 
from the fitting. Their data agree with the optimal fits of these equations to 
within 1.1%, but the scatter is considerably greater than what has been 
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observed for high-quality pure fluid coexisting density data. From their 
description of the experimental method, the total fluid volume was 
approximately constant but may not have been kept constant to high 
precision. 

Qualitatively, their results agree with our conclusions concerning the 
variation of coexisting compositions with temperature. Furthermore, they 
report that isochores for p < Pc terminate in a vapor state at T>  Tr and 
those for p > Pc terminate in a liquid state at T < T~, again consistent with 
our previous discussion. 

Further analysis would require construction of a modified Leung- 
Griffiths model for ethylene + propytene. To our knowledge, the only other 
VLE measurements on this mixture are those of Haselden et al. [7]. 
Although the critical line was thoroughly measured in Ref. 7, unfortunately 
very few dew- and bubble-point measurements were reported in the critical 
region, and thus the development of a modified Leung-Griffiths correlation 
would be highly problematical. We note in passing that, as is evident from 
Fig. 2, an extrapolation of the rectilinear diameter of the dew-bubble curve 
(rather than that of a two-phase isochore) would in general lead to 
substantially inferior estimates of the critical density. 

6. C U R R E N T  N E E D S  FOR B I N A R Y  M I X T U R E  
CRITICAL DENSITIES 

In the remainder of this paper we consider the situation in which 7~(x) 
is known with reasonable precision but pc(x) is unknown. We then recom- 
mend a method to determine pc(x) from a minimal amount of experimental 
measurement. 

It is emphasized that, for binary mixtures, the lack of Pc data is by no 
means a hypothetical situation. For most pure fluids of interest some 
experimental measurements of the critical density, although sometimes of 
questionable precision, are available. However, there are many binary 
mixtures for which the critical temperature locus has been measured but 
the critical density locus has not. 

Even for a mixture as important and basic as ethane + propane, there 
are to our knowledge no measurements of mixture critical densities or 
coexisting densities near critical. However, Maschke and Thodos [28] and 
Miksovsky and Wichterle [29] have collectively measured VLE loci in 
(P, x) along 17 different isotherms, so there is excellent information about 
the critical locus in pressure and temperature. 

Empirically it is found that To(x) is usually a very smooth function of 
x, so measurement of the critical temperature at four suitably spaced com- 
positions in most cases suffices for an accurate representation of the critical 
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temperature locus. Mixtures for which there are critical-region VLE 
measurements along at least four isotherms but no critical or critical-region 
coexisting density data include argon + krypton [30], krypton + methane 
[31], krypton + xenon [32], xenon + ethane [33], xenon + ethylene [34], 
carbon dioxide + dimethyl ether [35], carbon monoxide + methane [36], 
nitrous oxide + oxygen [37], and water + ethanol [38]. 

In addition, there have been critical region VLE measurements of 
other mixtures along at least four isopleths without accompanying density 
data. Such mixtures include propane + n-heptane [39], acetylene + 
propane and acetylene +propylene [40], dimethyl ether+ propylene and 
dimethyl ether + carbon dioxide [41 ], benzene + hexafluorobenzene [42], 
hydrogen chloride + propane [43, 44], and hydrogen chloride + krypton 
[43, 45]. 

Furthermore, there have been many direct measurements of the 
critical line with little or no accompanying VLE data. References 46-52 
collectively present critical temperature loci for 95 different binary 
mixtures, and independent critical density measurements are available for 
only three of them [20, 53, 54]. Finally, we note that Hicks and Young 
[55] have comprehensively reviewed the information on binary mixture 
critical lines through 1973, although many of the mixtures they list have 
discontinuous critical loci and are therefore not amenable to the present 
analysis. Critical density (or volume) information is provided for only 91 of 
a total of 382 mixtures. 

Application of the Rainwater-Moldover modification of the 
Leung-Griffiths model in principle requires the critical density locus as 
input. It happens that the P-T-x  surface is somewhat insensitive to the 
critical density locus. Hence a fairly accurate coexistence surface in P-T-x  
can sometimes be constructed based only on a reasonable guess for p~(x), 
although coexisting densities as predicted by such a model will be entirely 
speculative. The unfortunate aspect of this lack of sensitivity is that there is 
apparently no hope of deducing critical densities from P-T-x  data alone. 

7. FITS OF NONCRITICAL TWO-PHASE ISOCHORES 

We now consider the situation in which two-phase isochoric 
measurements are taken on a binary mixture for which Tc(x ) is known but 
pc(x) is not. The experimentalist can fill a fixed-volume cell with a mixture 
of known composition at a density which corresponds to the best initial 
estimate of po(x) but is not equal to p~ The resulting data correspond 
to noncritical two-phase isochores such as those displayed in Tables I and 
III. The question then arises whether the mixture critical density can be 
determined from data along a noncritical isochore. 
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One approach is suggested immediately by the observations in Sec- 
tion 4. If, to a good approximation, all rectilinear diameters of near-critical 
isochores lie on the same straight line, we may fit the data to Eq. (19), 
where e = T -  To(x) and To(x) is known, and again set Pc = A/2. 

A second possible approach is to fit such data to Eq. (21), which is 
based on Eq. (22). This may at first seem inappropriate since, for a non- 
critical isochore, XLv does not approach �89 as T approaches To(x). In fact, 
Xrv abruptly moves toward zero (if P'r<Pc) at the terminus of the 
isochore. However, Eq. (21) always yields an estimate for Pc which "forces" 
the coexistence densities to yield a value of XLv of 1 in the limit as the 
critical point is approached [with p v = p c  estimated via Eq. (21)]. That 
this estimated critical density is so close to the model value (see Tables VI 
and VII described later) has to do somewhat with the nearly coincidental 
rectilinear diameters at a fixed overall composition. A more detailed 
theoretical analysis including analysis of experimental data of the type 
suggested in Section 8 is needed to explain fully why one can fit noncritical 
isochoric data using Eq. (21) to obtain good estimates of the critical 
density. These methods are applied to the isochoric results generated by the 
model for x.r(N2)= 0.5088. 

Each noncritical isochore (pT/pc=0.931, 0.965, 1.035, 1.069) is fit 
separately. The results for the straight line fits, Eq. (19), and for the liquid 
volume fraction method, Eq. (21), are shown in Tables IV-VII. Data 
generated by the model are fit including the critical region (Tables IV and 
VI) and points removed from critical (Tables V and VII). Both methods 
prove to be quite successful. As with pure fluids [10], Eqs. (19) and (21) 

Table IV. Critical Density Estimates Using the Straight-Line Diameter  [Eq, (19)] in the 
Critical Region, xx(N2) = 0.5088 and p~ = 11.4330 kmol-  m -3 

Temperature [(Pc.EST -- P'r)/Pr] [ (Po,ES7 -- Po)/Po] 
range Px P{Pc Pe, EST • 100 X 100 
(K) (kmol . m  -3) (kmol ,m  -3) (%) (%) 

138.458- 
159.421 10.6442 0.931 11,4427 7.50 0.085 

138.238- 
158.988 11,0329 0.965 11.4321 3.62 -0 .008  

137.837- 
159.045 11.8332 1.035 11.4174 --3.51 -0 .136  

137.664~ 
158.685 12.2219 t.069 11.4082 --6.66 --0.217 
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Table V. Critical Density Estimates Using the Straight-Line Diameter [Eq. (19)] 
Away from the Critical Point, x r ( N 2 ) =  0.5088 and Pc = 11.4330 kmol .  m - 3  

711 

Temperature [ (Pc,EST T- P'r)/PT] [ (Pc, EST-- /Oc)/P~] 
range PT Px/Pc Pc, EST X 100 X 100 
(K) ( k m o l - m  -3) ( k m o l . m  3) (%) (%) 

138.458 
145.180 10.6442 0.931 11.4204 7.29 -0 .110  

138.238- 
144.896 11.0329 0.965 11.4087 3.4t -0 .213  

137.837- 
144.377 11.8322 1.035 11.3868 - 3 . 7 6  -0 .404  

137.664- 
144.153 12.2219 1.069 11.3769 6.91 0.491 

yield similar estimates for Pc when data up to the critical point are utilized. 
The straight-line diameter method yields estimates of Pc within about 
0.2%, while the liquid volume fraction method yields Pc estimates within 
0.1%. Equation (21) yields more accurate, consistent results for Pc (within 
0.1%) when data somewhat removed from the critical point are utilized, 
although the straight-line diameter remains accurate to 0.5% in the critical 
density. 

Table VI. Critical Density Estimates Using the Critical Liquid Volume Fraction 
Method [Eq. (21)] in the Critical Region, XT(N2)= 0.5088 and Pc = 11.4330 k m o l - m  -3 

Temperature [(Pc,EST -- PT)/PT] [(P~,EST -- Pc)/Pc] 
range PT PT/Pc Pc, EST X 100 X 100 
(K) ( k m o l - m  -3) ( k m o l - m  ~) (%) (%) 

138.458- 
159.421 10.6442 0.931 11.4454 7.53 0.108 

138.238 
158.988 11.0329 0.965 11.4372 3.66 0.037 

137.837 
159.045 11.8332 1.035 11.4315 - 3 . 3 9  -0 .013  

137.664- 
158.685 12.2219 1.069 11.4316 - 6 . 4 7  -0 .012  
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Table VII. Critical Density Estimates Using the Critical Liquid Volume Fraction Method 
[Eq. (21)] Away from the Critical Point, xT(N~)=0,5088 and p~= 1t.4330 kmol .m 3 

Temperature [(Pc, Esr--PT)/PT] [(P~,EsT--Pc)/Po] 
range PT PT/Pc Pc, EST X 100 X 100 
(K} (kmol-m -3) (kmol ,m -g) (%) (%) 

t38.458- 
145.180 10.6442 0.931 11,4443 7,52 0,099 

138.238 
144.896 11.0329 0.965 11,4402 3,69 0.063 

137.837- 
144.377 11.8332 1.035 tl.4300 --3.41 -0.026 

137.664- 
144.t53 12.2219 1,069 11.4276 -6,50 -0,047 

8. A P R O P O S E D  EXPERIMENTAL M E T H O D  

A possible procedure to determine Pc experimentally is now given. 
From a straight-line interpolation or other empirical methods such as that 
of Chueh and Prausnitz [56,1, one could obtain an estimate of Pc for a 
given composition. A cell would be then filled such that the overall density 
is equal to this estimate. The cell should be constructed to minimize expan- 
sion or contraction due to changes in pressure or temperature. 

As T is increased toward the critical point, pressure, temperature, and 
saturated liquid and saturated vapor densities are obtained. These data are 
then fit to Eq. (21) to obtain an estimate of Pc. If Pc from the fit and PT 
along which the data were taken are too far apart, the experiment could be 
repeated by filling the cell at a PT equal to the new estimate for po. A 
similar, although perhaps less accurate, procedure based on Eq. (19) could 
also be tried. 

It is noted that the results in Table VII especially indicate that if 
Eq. (21) is used to obtain an estimate of Pc, one could be as much as 7% 
away from the critical isochore and ~ 15 K below the critical temperature 
and still obtain a good estimate for the critical density. This procedure 
therefore enables experimental avoidance of the region very near critical, 
where gravity effects make measurement extremely difficult [3, 4,1. 

9. S U M M A R Y  

The Leung-Griffiths model [ t8 ] ,  as modified by Rainwater and 
Moldover [14, 16-1, has provided for the first time a quantitatively accurate 
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description of binary mixture VLE in the critical region. From this model, 
the thermodynamic behavior along two-phase isochores, both critical and 
noncritical, is analyzed. The objective is to develop procedures for the 
efficient determination of critical density loci when only critical tem- 
perature loci are known. The needs for such procedures are well documen- 
ted. 

It is observed that rectilinear diameters of isochores for different 
overall densities at the same overall composition nearly fall along the same 
straight line. This observation has been exploited to design a procedure for 
deducing the mixture critical density from experimental data along an 
isochore near, but not on, the critical density. Two fitting equations are 
tested, and it is found that the equation based on Van Poolen's liquid 
volume fraction analysis [8-11 ] yields the best results. 

The modified Leung-Griffiths model at present incorporates only sim- 
ple scaling, but efforts have commenced to include revised and extended 
scaling and, therefore, "hooks" in the rectilinear diameters. When this 
advanced model has been fully developed, the present analysis should be 
repeated. 

Other applications of the method are worth investigating. For exam- 
ple, the critical two-phase isochores might be a convenient replacement for 
lines of constant ~ as a thermodynamic coordinate in an alternative 
correlation of the binary mixture coexistence surface. This approach is 
currently being investigated by Van Poolen. 

NOTE ADDED IN PROOF 

A thorough measurement of the near-critical VLE surface of 
ethylene+propylene (see Sec. 5) has recently been published by 
H. Kubota, H. Inatome, Y. Tanaka and T. Makita, J. Chem. Eng. Japan 
16:99 (1983); see also H. Bae, K. Nagahama and M. Hirata, J. Chem. Eng. 
Japan 14:1 (t981). 
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